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Abstract—A hypergraph is a set of vertices and a set of
nonempty subsets of , called hyperedges. Unlike graphs, hy-
pergraphs can capture higher-order interactions in social and
communication networks that go beyond a simple union of pair-
wise relationships. In this paper, we consider the shortest path
problem in hypergraphs. We develop two algorithms for finding
and maintaining the shortest hyperpaths in a dynamic network
with both weight and topological changes. These two algorithms
are the first to address the fully dynamic shortest path problem
in a general hypergraph. They complement each other by parti-
tioning the application space based on the nature of the change
dynamics and the type of the hypergraph. We analyze the time
complexity of the proposed algorithms and perform simulation
experiments for random geometric hypergraphs, energy efficient
routing in multichannel multiradio networks, and the Enron email
data set. The experiment with the Enron email data set illustrates
the application of the proposed algorithms in social networks
for identifying the most important actor and the latent social
relationship based on the closeness centrality metric.

Index Terms—Dynamic, hypergraph, hyperpath, shortest path.

I. INTRODUCTION

A GRAPH is a mathematical abstraction for modeling net-
works, in which nodes are represented by vertices and

pairwise relationships by edges between vertices. A graph is
thus given by a vertex set and an edge set consisting of
cardinality-2 subsets of . A hypergraph is a natural extension
of a graph obtained by removing the constraint on the cardinality
of an edge: Any nonempty subset of can be an element (a hy-
peredge) of the edge set (see Fig. 1). It thus captures group
behaviors and higher-dimensional relationships in complex net-
works that are more than a simple union of pairwise relation-
ships. Examples include communities and collaboration teams
in social networks, document clusters in information networks,
and cliques, neighborhoods, and multicast groups in communi-
cation networks.

Manuscript received September 16, 2013; revised June 04, 2014; accepted
July 14, 2014; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Ed-
itor S. Ramasubramanian. This work was supported by the Army Research Lab-
oratory Network Science CTA under Cooperative Agreement W911NF-09-2-
0053.
J. Gao and Q. Zhao are with the Department of Electrical and Computer

Engineering, University of California, Davis, Davis, CA 95618 USA (e-mail:
jhgao@ucdavis.edu).
W. Ren is with the Microsoft Corperation, Redmond, WA 98052 USA.
A. Swami is with the Army Research Laboratory, Adelphi, MD 20783 USA.
R. Ramanathan is with Raytheon BBN Technologies, Cambridge, MA 02138

USA.
A. Bar-Noy is with the Department of Computer Science, City University of

New York, Brooklyn, NY 11210 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2014.2343914

Fig. 1. Example hypergraph with four hyperedges: ,
, , and .

While the concept of hypergraph has been around since the
1920s (see, for example, [1]), many well-solved algorithmic
problems in graph remain largely open under this more general
model. Here, we address the shortest path problem.

A. Shortest Path Problem in Graphs

The shortest path problem is perhaps one of the most basic
problems in graph theory. It asks for the shortest path between
two vertices or from a source vertex to all the other vertices (i.e.,
the single-source version or the shortest path tree). Depending
on whether the edge weights can be negative, the problem can be
solved via Dijkstra’s algorithm or the Bellman–Ford algorithm.
The dynamic version of the shortest path problem is to main-

tain the shortest path tree without recomputing from scratch
during a sequence of changes to the graph. A typical change to a
graph includes weight increase, weight decrease, edge insertion,
and edge deletion. The last two types of changes model network
topological changes, but they can be conceptually considered
as special cases of weight changes by allowing infinite edge
weights. Thus, if the sequence of changes contains only edge
deletion and weight increase, we call it a decremental problem;
if it contains only edge insertion and weight decrease, we call
it an incremental problem. Otherwise, we have a fully dynamic
problem. If multiple edges can change simultaneously, then it is
a batch problem. Example dynamic shortest path algorithms for
graphs can be found in [2]–[5].

B. Shortest Path Problem in Hypergraphs

Both the static and dynamic shortest path problems have a
corresponding version in hypergraphs. A hyperpath in a hyper-
graph is a sequence of hyperedges with two adjacent hyperedges
sharing at least one vertices. The weight of a hyperpath is the
sum of the weights of each hyperedge on this hyperpath. The
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shortest hyperpath problem in weighted hypergraphs where a
nonnegative weight is attached to each hyperedge is thus clearly
defined. The static shortest hyperpath problem was considered
by Gallo et al. [6] in which Dijkstra’s algorithm was extended
to obtain the shortest hyperpaths. Ausiello et al. proposed a
semi-dynamic minimum length hyperpath algorithm with time
complexity for directed hypergraphs.While
they considered a more general definition of hyperpath length
(which can be an arbitrary function of the hyperedge weight on
the hyperpath), their dynamic algorithm was developed under
a very restrictive assumption. Specifically, it was assumed that
the length of a path can only come from a finite discrete set with
size . Since the time complexity of their algorithm is linear in
, their algorithm is not applicable to hypergraphs where edge

weights can be any real number as considered in this paper. Fur-
thermore, they considered only the incremental part of the dy-
namic maintenance, while in this paper we consider both incre-
mental and decremental problems. A dynamic algorithm for the
batch problem for a special class of hypergraphs was developed
in [3].
With the exception of the above few studies, the shortest hy-

perpath problem remains largely unexplored. To the best of our
knowledge, no algorithms exist for the fully dynamic problem
in a general hypergraph.
In this paper, we develop two fully dynamic shortest path al-

gorithms for general hypergraphs. These two algorithms com-
plement each other, with each preferred in different types of hy-
pergraphs and change dynamics.
Referred to as the HyperEdge-based Dynamic Shortest Path

algorithm (HE-DSP), the first algorithm is an extension of the
dynamic Dijkstra’s algorithm for graphs to hypergraphs (par-
allel to Gallo’s extension of the static Dijkstra’s algorithm to
hypergraphs in [6]). The extension of the dynamic Dijkstra’s al-
gorithm to hypergraphs is more involved than that of the static
Dijkstra’s algorithm. This is due to the loss of the tree structure
(in the original graph sense) in the collection of the shortest hy-
perpaths from a source to all other vertices. Since the dynamic
Dijkstra’s algorithm relies on the tree structure to update the
shortest paths after an incremental change, special care must be
taken when extending it to hypergraphs.
The second algorithm is rooted in the idea of Dimension Re-

duction and is referred to as DR-DSP. The basic idea is to re-
duce the problem to that in an induced graph derived from the
original hypergraph. The induced graph of a hypergraph has the
same vertex set and has an edge between two vertices if and only
if there is at least one hyperedge containing these two vertices
in the original hypergraph. The weight of an edge in the induced
graph is defined as the minimum weight among all hyperedges
containing the two vertices of this edge. The shortest hyperpath
in the hypergraph can thus be obtained from the shortest path in
the induced graph by substituting each edge along the shortest
path with the hyperedge that lent its weight to this edge. The
correctness and advantage of this algorithm are readily seen:
The definition of weight in the induced graph captures the min-
imum cost offered by all hyperedges in choosing a path between
two vertices, thus ensuring the correctness of the algorithm; the
reduction of a hypergraph to its induced graph removes many
hyperedges from consideration when finding the shortest path,
leading to efficiency and agility to dynamic changes.

As will be shown in the time complexity analysis given in
Section V, HE-DSP is more efficient in hypergraphs that are
densely connected through high-dimensional hyperedges and
for network dynamics where changes often occur to hyper-
edges that are not on the current shortest hyperpaths. DR-DSP
has lower complexity when hyperedge changes often lead to
changes in the shortest hyperpaths. This is usually the case in
networks where hyperedges in the shortest hyperpaths are more
prone to changes due to attacks, frequent use, or higher priority
in maintenance and upgrade. While we focus on undirected
hypergraphs in the paper, the two algorithms apply to directed
hypergraphs as discussed in Section VI. They also apply to
batch hyperedge change problems with minor modifications.

C. Applications

Shortest path computations on hypergraphs can be applied to
communication as well as social networks. An example applica-
tion is routing in multichannel multiradio ad hoc networks [8].
As detailed in Section VII, we consider energy-efficient routing
where the link metric is energy consumption including both
transmitting and receiving energy. To capture the presence
of different neighbor sets associated with different channels
available to a particular node, a directed hypergraph model
is needed in which a hyperedge is formed from a vertex to
its neighbors that shares a particular channel and different
channels available to this vertex lead to different hyperedges.
The weight of a hyperedge is given by the total energy cost
of a transmission from the sending vertex using the channel
corresponding to this hyperedge. A shortest hyperpath from the
source to the destination is the least-energy-cost route, and as
network topology changes, a dynamic algorithm is required to
maintain the shortest hyperpath.
In social networks, information (results, event reports, opin-

ions, rumors, etc.) propagates through diverse communication
means including direct links (e.g., gestures, optical, satcom, reg-
ular phone call, e-mail), social media (e.g., Facebook, Twitter,
blogs), mailing lists, and newsgroups. Such a network may be
modeled as a hypergraph with the weight of a hyperedge re-
flecting the cost, credibility, and/or delay in disseminating infor-
mation among all vertices of this hyperedge. In particular, the
weight of a hyperedge can capture the unique effect on the infor-
mation after it passes through a group of people. For instance,
a result can be discussed by overlapping blog collaboration net-
works as it spreads, and often the discussion yields a better result
than if it only spreads through individuals. The minimum-cost
information-passing in social networks can thus be modeled as
a shortest hyperpath problem with suitably defined weights.
Another potential application is that of finding the most im-

portant actor and the latent relationships in a social network.
Under a graph model of social networks, the relative importance
of a vertex can be measured by its betweenness and closeness
centrality indices. The former is defined based on the number
of shortest paths that pass through this vertex, and the latter, the
total weight of the shortest paths from this vertex to all the other
vertices [13]. In a social network exhibiting hyper-relationships,
betweenness and closeness centrality, based on the shortest hy-
perpaths, would be better indicators of the relative importance
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of each actor. In Section VII, we apply the proposed shortest hy-
perpath algorithms to the Enron e-mail data set. We propose a
weight function that leads to the successful identification of the
CEO of Enron as the most important actor under the closeness
centrality metric. The distance of each person in the data set to
the CEO along the resulting shortest hyperpaths closely reflects
the hierarchical structure of the company.

II. DYNAMIC SHORTEST HYPERPATH PROBLEM

In this seciton, we introduce some basic concepts of hyper-
graph and define the static and the dynamic shortest hyperpath
problems. Some basic properties of the shortest hyperpaths are
established and will be used in developing the dynamic algo-
rithms in subsequent sections.

A. Hypergraph and Hyperpath

Let be a finite set and a family of subsets of . If for all
elements , the following conditions are satisfied:

then the couple is called a (undirected) hypergraph.
Each element is called a vertex, and each element
a hyperedge.
A weighted undirected hypergraph is a triple

with being a nonnegative weight function
defined for each hyperedge in .
In a hypergraph, a hyperpath is defined as follows.
Definition 1: A hyperpath between two vertices and is

a sequence of hyperedges such that ,
, and for . A hyperpath

is simple if nonadjacent hyperedges in the path are nonoverlap-
ping, i.e., .
Let be a hyperpath in a weighted hyper-

graph . We define the weight of as

B. Shortest Hyperpath and Relationship Tree

Given two vertices and , a natural question is to find the
shortest hyperpath (in terms of the path weight) from to .
Since the weight function is nonnegative, it suffices to consider
only simple hyperpaths. If the shortest hyperpath is not simple,
we can always generate a simple hyperpath without increasing
the weight by deleting all the hyperedges between two overlap-
ping nonadjacent hyperedges.
The dynamic shortest hyperpath problem can be similarly

defined for a sequence of hyperedge
changes. Hyperedge changes are of the same four types as
edge changes in a graph: weight increase, weight decrease,
hyperedge insertion, and hyperedge deletion. Similarly, weight
increase and hyperedge deletion will be treated together, so will
weight decrease and hyperedge insertion.
In this paper, we consider the single-source shortest hy-

perpath problem: Find the shortest hyperpaths from a given

Fig. 2. Hyperpaths and the associated relationship trees.

source to all other vertices. We focus on undirected hyper-
graphs first and defer the treatment of directed hypergraphs to
Section VI.
We establish a basic property of shortest hyperpaths. It states

that any segment of a shortest hyperpath is also a shortest hy-
perpath between any two vertices with each in one of the two
end hyperedges of this segment.
Lemma 1: Let be a shortest hyperpath

from to . Then, for any vertex , the
hyperpath is a shortest hyperpath from
to . Furthermore, for any two vertices (if there
exist at least two vertices in ), the shortest distances
from to both vertices are equal.

Proof: We will prove by contradiction. Assume that
is not a shortest hyperpath for . Then,

there exists a different hyperpath
with . Then, consider the hyperpath

, we have ,
which contradicts the fact that is a shortest hyperpath to
. This completes the proof for the first part of the lemma.
Furthermore, for any two nodes , since is
the shortest hyperpath for both vertices, the shortest distances
from to both vertices equal to .
Next, we introduce the concept of relationship tree that is

needed in the proposed dynamic shortest hyperpath algorithm
HE-DSP. Since two adjacent hyperedges in a hyperpath may
overlap at more than one vertex, the shortest hyperpaths from
to all other vertices do not generally form a tree in the orig-

inal graph sense. For the development of the dynamic shortest
hyperpath algorithms, we introduce the concept of relationship
tree to indicate the parent–child relationship along shortest hy-
perpaths. The concept can be easily explained in the example
given in Fig. 2. Let be a shortest hyperpath from to
. By Lemma 1, is a shortest hyperpath for both and
. As illustrated in Fig. 2, there are four possible relationship

trees to indicate the parent–child relationship in these shortest
hyperpaths. We will show in Section III that the choice of the
relationship tree does not affect the correctness or performance
of the proposed algorithm HE-DSP.

C. Notations

In the following, denotes the distance of a vertex to the
source on the shortest hyperpath, the parent of in the
chosen relationship tree associated with the shortest hyperpaths,
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and the hyperedge containing and on the shortest
hyperpath (i.e., the hyperedge that leads to from on the
shortest hyperpath).
A vertex is called an affected vertex if , , and/or
change in the new set of shortest hyperpaths. A hyperedge

is called an affected edge if it contains an affected vertex. When
it is necessary to distinguish the shortest distance before and
after a weight change, will denote the shortest distance be-
fore the change, the shortest distance after the change, and

the actual value stored in the data structure during the ex-
ecution of the algorithm.

III. HYPEREDGE-BASED DYNAMIC SHORTEST PATH (HE-DSP)
ALGORITHM

In this section, we propose HE-DSP. It is an extension of the
dynamic Dijkstra’s algorithm to hypergraphs. The extension is
more complex than Gallo’s extension of the static Dijkstra’s al-
gorithm since the dynamic Dijkstra’s algorithm for graphs relies
on the tree structure of the shortest paths, a structure no longer
there for the shortest hyperpaths.

A. Hyperedge Weight Decrease

For weight decrease, consider that the weight of a hyperedge
decreases to . It can be shown that the vertex

with will not be affected.We then check
whether the other vertices in are affected by checking whether
the following inequality holds:

(1)

We then put all the affected vertices into a priority queue1 .
The rest of the procedure is similar to the dynamic Dijkstra’s
algorithm, except that when we update the distance of a vertex,
we check all the hyperedges that contain this vertex. A detailed
implementation of the algorithm is given as follows.

HE-DSP: Weight Decrease .
Step0 (Update the hypergraph)

1
Step1 (Determine the affected vertices in )

2
3 for each such that do
4
5
6 end
Step2 (Iteratively enqueue and update affected
vertices)

7 while NonEmpty do
8
9 for each s.t.
10 for each
11 if then

1A priority queue is an abstract data type with the following access protocol:
Only the highest-priority element can be accessed. Basic operations of a pri-
ority queue include Enqueue (add a new item to the queue), Dequeue (remove
the item with the highest priority and return this item), Update (change the pri-
ority of one item in the queue), and Peek (obtain the value of the item with the
highest priority). Standard implementations of a priority queue with different
time complexities include array, link list, Binary heap, and Fibonacci heap [14].

12

13 Enqueue or
14 end; end; end; end

The following theorem states the correctness of the algorithm.
Theorem 1: If before the weight decrease, , ,

and are correct for all , then after the weight de-
crease, , and and are correctly updated
by HE-DSP.

Proof: See Appendix A.

B. Hyperedge Weight Increase

To handle hyperedge weight increase, special care must be
taken to find all the affected vertices. This process in the graph
case relies on the tree structure of the shortest paths that no
longer exists in shortest hyperpaths. Our solution is to use a
relationship tree as introduced in Section II-B.
Consider that the weight of a hyperedge increases to .

If is not an edge in any of the current shortest hyperpaths,
then none of the vertices will be affected; all shortest hyper-
paths remain unchanged. Otherwise, the descendants, and only
the descendants of this edge in the current relationship tree,
may be affected. For these vertices, some of them will have in-
creased distances, some of them will go through an alternative
path with the same distance (but changed parent or hyperedge),
while the rest will not be affected. In order to classify the ver-
tices into these three categories, we propose the following col-
oring process, which is a modification of the coloring idea in
Frigioni’s algorithm for graphs [4] to take care of the nonunique
choice of parent in hypergraphs.
1) is colored white if while keeping the
current and .

2) is colored pink if , but only possible
through a new or or both.

3) is colored red if .
It can be shown that if a vertex is white or pink, all its

descendants in the relationship tree are white; if is red, all
its descendants are either red or pink. Therefore, we have the
following coloring procedure. We first determine the color of
each vertex in . Specifically, the vertex with

will not be affected and will be colored white.
Any other vertex (say ) in will be either pink or red, which
we can determine by checking whether there is an alternative
shortest hyperpath with the same distance for (note that
cannot be white due to the weight change of hyperedge that is
on its current shortest hyperpath); if such a path exists, then we
color pink, otherwise we color it red and put all its children in a
priority queue . The procedure then iterates over each vertex
in according to an increasing order of the vertex distances.
After the coloring process, we only need to deal with the red

vertices. For each red vertex , we initialize its distance with the
distance of the shortest path through one of its nonred neighbors
and put in another priority queue (if no nonred neighbor
exists, we initialize it with ). We then iterate by extracting the
vertex at the top of and updating its neighbors and until
is empty.
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A detailed implementation of the algorithm is given as
follows.

HE-DSP: Weight Increase .
Step0 (Update the hypergraph)

1
Step1 (Determine the affected vertices in )

2 for each s.t. do
3
Step2 (Coloring process)

4 while
5
6 if s.t. with

and
7 then z is pink; ; ;
8 else z is red; Enqueue( , all ’s children)
9 end; end
Step3.a (Initialize the distance vector for red vertices)

10 for each red vertex do
11 if has no nonred neighbor
12 then ; Null
13 else
14 let be the best nonred neighbor of z
15
16
17
18 end; end; end

Step3.b: Step2 of HE-DSP: Weight Decrease

The theorem below states the correctness of the algorithm.
Theorem 2: If before the weight increase, ,

and are correct for all , then after the weight increase,
, and also and are correctly updated by

HE-DSP regardless of the choice of the relationship tree.
Proof: See Appendix B.

IV. DIMENSION-REDUCTION-BASED DYNAMIC SHORTEST
PATH (DR-DSP) ALGORITHM

In this section, we propose DR-DSP. DR-DSP reduces the
single hyperedge change problem in a hypergraph to a batch
problem in an underlying graph. When the dynamic problem
degenerates to the static problem, DR-DSP leads to an alterna-
tive algorithm for solving the static shortest hyperpath problem.

A. Static Case: DR-SP

We first consider the static version of the algorithm (referred
to as DR-SP), which captures the basic idea of dimension re-
duction. We introduce an underlying graph that captures the es-
sential (rather than complete) information for shortest path cal-
culation with only vertices (see Section VIII for a comparison
of our approach and other graph transformation schemes).
The proposed DR-SP algorithm is based on the following the-

orem in which we show that for a general hypergraph , the
weight of the shortest path of is equal to the weight
of the shortest path of an induced graph derived from .
Specifically, corresponding to every hyperedge in , con-
tains a clique defined on the vertices of .

Theorem 3: Let be a hypergraph, and
the induced graph of where an edge if and only

if such that . For each edge in , its weight
is defined as

(2)

Let and be the shortest paths from to in
and , respectively. Then, we have that

Proof: First, for each shortest path in , we can obtain
a corresponding hyperpath in with the same weight based
on (2), therefore we have that

Then, it suffices to show that there exists a path
in such that , which implies that

.
Assume that is a shortest hyperedge

path from to in where and . Let
be one of the vertices

in the intersection of hyperedges and . Construct a path
in the graph . For each edge

, since , it follows from
(2) that

Thus

i.e., .
It follows from Theorem 3 that the shortest path in a general

hypergraph can be obtained by applying Dijkstra’s algorithm to
the induced graph as defined in the theorem.

B. Dynamic Case: DR-DSP

We now consider the dynamic case of the problem. Since
the underlying graph introduced in Section IV-A does not cap-
ture the complete information of the original hypergraph, the
key challenge here is how to update the underlying graph with
polynomial time complexity when changes occur in the original
hypergraph. Our approach is to introduce a special data struc-
ture—a list of priority queues—to maintain the complete infor-
mation of the original hypergraph.
In the dynamic case, a sequence of

hyperedge changes in the hypergraph results in a sequence
of edge changes in the induced graph . For each hyperedge
change , DR-DSP first updates the induced graph to locate
all the changed edges caused by . In the next step, DR-DSP
updates the shortest path tree in the induced graph .
Consider first the graph update. A change to a hyperedge

only affects those edges in that are subsets of , i.e., a hy-
peredge change is localized in the induced graph . Further-
more, since the weight of an edge in is the minimum weight
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of all hyperedges containing it, not all edges in that are sub-
sets of will change weight. Based on these observations, we
propose a special data structure and procedure for updating the
induced graph without regenerating the graph from scratch.
Specifically, at the initialization stage of the algorithm, a priority
queue for each pair of vertices in the hypergraph is
established to store the weights of all hyperedges that contain
both and . When a change occurs to hyperedge , all the pri-
ority queues associated with the pair of vertices that
are contained in are updated with the new weight of . Thus,
the top of these priority queues always maintains the weight for
edge in the induced graph for each . A detailed
implementation of the proposed procedure is given as follows.

Graph Update
1 for each
2
3
4 end;

After the induced graph has been updated, we now face
a dynamic shortest path problem in a graph. However, since a
single hyperedge change can result in multiple edge changes in
, we need to handle a batch problem. While existing batch al-

gorithms and iterative single-change algorithms for graphs can
be directly applied here, we show that the batch problem we
have at hand has two unique properties that can be exploited to
improve the efficiency of the algorithm.
Property 1: The edge changes in caused by a hyperedge

change are either all weight decreases or all weight increases.
Property 2: All changed edges in caused by a hyperedge

change belong to a clique in .
In the case of weight decrease, if the weight of hyperedge

decreases to , by Theorem 3 and Property 1, there
are (possibly) several edge-weight decreases in the induced
graph . We know that there is at least one unaffected node

. By Property 2, these affected edges
are contained in a clique derived from the changed hyperedge;
therefore, it is sufficient to determine the distance of every
node (other than ) in the original changed hyperedge by
checking whether . We can initialize the
priority queue with those nodes whose weights decrease. After
that, the procedure is similar to dynamic Dijkstra’s algorithm in
the graph case. Detailed implementations of DR-DSP weight
decrease are given as follows.

DR-DSP: Weight Decrease .
Step0 (Update the hypergraph and )

1
2 Graph Update
Step1 of HE-DSP: Weight Decrease
Step2 (Iteratively update all affected vertices)

3 while NonEmpty do
4
5 for each s.t.
6 if then
7
8 Enqueue or

9 end; end; end

In the case of weight incresae, if the weight of hyperedge
increases to , by Theorem 3 and Property 1, there are (pos-
sibly) several edge-weight increases in the induced graph .
Similar to the single-change case in graph, there is at least one
unaffected node . Then, another node

is affected only if , i.e., is on its shortest hyper-
path. We use all such nodes to initialize the priority queue .
The rest is similar to that in the dynamic Dijkstra’s algorithm
case.
Detailed implementations of DR-DSP weight increase are

given as follows.

DR-DSP: Weight .
Step0 (Update the hypergraph and )

1
2 Graph Update
Step1 of HE-DSP: Weight Increase
Step 2 (Coloring Process)

3 while
4
5 if s.t.
6 then z is pink
7 else z is red; Enqueue( , all ’s children)
8 end; end
Step3.a (Initialize the distance vector for red vertices)

9 for each red vertex do
10 if has no nonred neighbor
11 then ; Null
12 else
13 let be the best nonred neighbor of z
14
15
16 end; end; end

Step3.b: Step2 of DR-DSP: Weight Decrease

V. TIME COMPLEXITY ANALYSIS

Given a hypergraph and a change to hyper-
edge , let denote the number of affected vertices,

, the number of edges in the induced
graph, and the number of affected edges in the induced
graph plus .
Theorem 4: The time complexities of HE-DSP and DR-DSP

are and ,
respectively.

Proof: The time complexity of DR-SP mainly comes from
Steps 1 and 2. Step 2 is essentially applying Dijkstra’s algo-
rithm to a graph with vertices and edges where is the
number of edges in the induced graph . The running time is
thus . An implementation of Step 1 is to ob-
tain the edge weight based on (2). Therefore, the time
complexity for Step 1 is , i.e., . With
upper-bounded by (since for each , there are at most

edges in ), we arrive at the total time complexity
of DRSP.
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For Gallo’s Algorithm, similar to Dijkstra’s algorithm, the
time complexity is mainly in updating the neighbors of the non-
fixed vertex with the minimal distance . For each , the
algorithm scans all the hyperedges containing . For each pair
of vertices , is scanned twice. Therefore, the total
number of such operations is . Also, extracting
from the priority queue implemented by a Fibonacci heap takes

time. The total time complexity of Gallo’s algorithm
thus follows.
For a simplicial complex, , the complexity

of Gallo’s algorithm thus follows. For DR-SP, exploiting the
property that the edge set is closed under the subset operation in
a simplicial complex, we can use a top-down scheme in Step 1 of
DR-SP to calculate the weight inductively with respect
to the dimension of a facet as follows:

where for the facet . The time complexity for
Step 1 can then be improved. Because each -dimensional face
is associated with comparisons, the running time of Step 1
for each -dimensional facet is given by

Therefore, the time complexity for Step 1 is . The total
time complexity thus follows.
From Theorem 4, we see that if is small and is large,

HE-DSP performs better, since in DR-DSP, the induced graph
has to be updated regardless of whether there are affected ver-
tices. Thus, in a sequence of hyperedge changes, if only a small
fraction of them actually have affected nodes, then HE-DSPwill
outperform DR-DSP. On the other hind, if is large, DR-DSP
will outperform HE-DSP since usually .

VI. DIRECTED HYPERGRPAH

In this section, we extend both algorithms to directed
hypergraphs.

A. Definitions

In a directed hypergraph , each hyperedge
consists of a source vertex and a set of terminal vertices
(see Fig. 3 for an illustration). A directed hyperpath from to
is a sequence of directed hyperedges such
that , and for . See
Fig. 3 for an example of a hyperpath with two hyperedges:

where
.

Based on the definition, one can easily see that an undirected
hypergraph can be seen as a special case of a directed hyper-
graph. Specifically, each undirected hyperedge with vertices
can be treated as directed hyperedges, each from a source
vertex in to the destination set . Additionally, these
directed hyperedges share the same weight as the undirected

hyperedge.

Fig. 3. Directed hyperpath with two directed hyperedges.

B. Extensions

First, we extend HE-DSP to directed hypergraphs. Consider
first the case with weight decrease. In Step 1, we still identify
the affected vertices in the changed hyperedge . However, since
the changed hyperedge has only one source vertex, if any other
vertex is affected, its new shortest path has to come from the
source vertex. Specifically, if a vertex satisfies

, then it has a shortest path from through the
changed hyperedge and becomes an affected vertex. We then
put it into the priority queue . In Step 2, we still extract the
vertex with minimal current distance in and use it to update
neighbors. Since the model is directed, instead of looking at
all hyperedges that contain , we only consider those directed
hyperedges sourced at . The rest of the algorithm remains the
same.
For weight increase, the extension of HE-DSP is similar to

the above process. In Step 1, we put all the receiving vertices in
to initialize the coloring. Then, in both coloring and updating

process, when checking or updating the state of neighbors, we
simply change the set of neighbors through one hyperedge to
the receiving set .
Next, we consider an extension of the DR-DSP algorithm.

Since the original hypergraph is directed, the induced graph
becomes a directed graph. The weight of one edge is

the minimum weight among all hyperedges that provide a path
from to . More specifically, the weight is given by

(3)

Theorem 3 can be easily extended to the directed case. Hence,
the problem is reduced to a special batch dynamic shortest path
problem in directed graph, and both DR-DSP: Weight Decrease
and DR-DSP: Weight Increase can be extended.

VII. SIMULATION EXAMPLES

We present simulation results on the running time of the pro-
posed dynamic shortest hyperpath algorithms. We test the pro-
posed algorithms on hypergraphs generated from a random geo-
metric model as well as those generated by the Enron e-mail data
set. All simulation code is compiled and run on the same laptop
equipped with a 3.0-GHz i7–920XM Mobile Processor.

A. Random Geometric Hypergraph

We first consider a random geometric hypergraph model in
which nodes are uniformly distributed in an square. All
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nodes within a circle with radius form a hyperedge (circles
are centered on an grid). The weight of each hyperedge
is given by the average distance between all pairs of vertices of
this hyperedge.
A sequence of changes is then generated, and the proposed

dynamic algorithms are employed to maintain all the shortest
hyperpaths from the source located at a corner of the
square. Each change can be a hyperedge insertion (with prob-
ability ), a hyperedge deletion (with probability ), or a
weight change (with probability ) with new weight
chosen uniformly in . In the case of a hyperedge
deletion or a weight change, the hyperedge to be deleted or to be
assigned a newweight is chosen according to the twomodels de-
tailed below. Hyperedge insertions are only realizedwhen there
are hyperedges that have been deleted, and a randomly chosen
one is inserted back. This ensures that all hyperedges satisfy the
geometric property determined by at all time. It also models
the practical scenario where a broken link is repaired.
In selecting a hyperedge for deletion or weight change, we

consider two different models: the random change model and
the targeted change model. In the former, the hyperedge is ran-
domly and uniformly chosen among all hyperedges. In the latter,
it is randomly and uniformly chosen from the current shortest
hyperpaths. This models the scenarios where hyperedges in the
shortest hyperpaths are more prone to changes due to attacks,
frequent use, or higher priority in maintenance and upgrade.
In Fig. 4, we show the simulation results on the running

time of the two proposed algorithms under a sequence of
10 changes. We see that HE-DSP has lower complexity in
networks with random topological and weight changes (Fig. 4,
top), whereas DR-DSP should be preferred in networks with
targeted changes (Fig. 4, bottom). This partition of the appli-
cation space can be explained from the structures of these two
algorithms. Under the random change model, a large fraction
of changes does not result in changes in the current shortest
hyperpaths. Such changes lead to little computation in main-
taining the shortest hyperpaths for both algorithms, but require
about the same amount of computation in the Graph-Update
step of DR-DSP for maintaining the induced graph. On the
other hand, under the targeted change model, all hyperedge
deletions and weight changes affect the shortest hyperpaths.
Updating the shortest hyperpaths can be done more efficiently
in DR-DSP since it works on the induced graph with a much
smaller number of edges.

B. Energy-Efficient Routing in Multichannel Multiradio
Networks

Consider a multichannel multiradio ad hoc network with
nodes and channels. Each node is associated with a

fixed transmission range , a transmission energy cost ,
a receiving energy cost , and a list of channels

available to it.
This network can be modeled by a directed hypergraph where

a directed hyperedge consists of one source vertex and
a set of destination vertices . Specifically, each node is a
vertex in the hypergraph. For each channel available to
node , there is a hyperedge from to the set of vertices
consisting of nodes that are within the transmission range of

Fig. 4. Average running time. (top) Random change model. (bottom) Targeted
change model ( , , , , , ,

, , the average is taken over 50 random hypergraphs).

and share the channel (if is empty, we do not consider this
hyperedge). Then, the cost of this hyperedge is defined as

(4)

We consider a mobile network. In this case, all four types of
hyperedge changes (i.e., edge insertion, edge deletion, weight
increase, and weight decrease) can occur, and multiple changes
can occur simultaneously. We thus have a fully dynamic batch
problem (as stated earlier, the proposed algorithms can handle
batch changes with minor changes in their implementations).
In the simulation results shown in Fig. 5, nodes are uni-

formly distributed within an square. The list of channels
available to each node is drawn from all channels with proba-
bility . At each time, one node is randomly chosen to move.
The movement is generated by a random vector

. We have implemented five algorithms: repeating
static algorithm, repeating single change HE-DSP, repeating
single change DR-DSP, batch HE-DSP, and batch DR-DSP. As
we can see from Fig. 5, all dynamic algorithms outperform the
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Fig. 5. Average running time with parameters , ,
, , , ,

, and . The average is taken over 50
random hypergraphs.

static algorithm. Also, the batch algorithms perform better than
repeating the single change dynamic algorithms. In both single
and batch algorithms, HE-DSP are better than DR-DSP. This
is mainly because many hyperedge changes occur outside the
current shortest hyperpaths.

C. Enron E-Mail Data Set

In this example, we consider the application of the shortest
hyperpath algorithms in finding the most important actor in a
social network. We consider the Enron e-mail data set and use
the same hypergraph generation model as in [15]. Specifically,
each person is a vertex of the hypergraph, and the sender and
recipients of every e-mail form a hyperedge. Our objective is
to identify the most important person measured by the close-
ness centrality index (i.e., the total weight of the shortest hyper-
paths from this person to all the other persons). The first step
is to assign weight to each hyperedge that reflects “distance.”
While there is no universally accepted way of measuring dis-
tance in a social network observed through e-mail exchanges,
certain general rules apply. First, a direct e-mail exchange be-
tween two persons indicates a stronger tie than an e-mail sent to
a large group. Thus, the weight of a hyperedge should be an in-
creasing function of the cardinality of this hyperedge. Second,
more frequent e-mail exchange among a given group of people
shows stronger ties. Thus, the weight of a hyperedge should be
decreasing with the number of times that this hyperedge appears
in the e-mail data set. Considering these two general rules, we
adopt the following weight function:

(5)

where is the cardinality of the hyperedge , and is the
parameter measuring how fast the weight decreases with the
number of times that this hyperedge appears in the data set.

Fig. 6. Average distance from the CEO to others at different positions.

We can then apply DR-SP on the resulting (static) hypergraph
to find the shortest hyperpaths rooted at each vertex and com-
pute this vertex’s closeness centrality index. With the weight
function given in (5) using , the identified most impor-
tant actor is the CEO of Enron. The average distance (along the
shortest hyperpath) from the CEO to other persons at various po-
sitions is shown in Fig. 6. We observe that, in general, the higher
the position, the shorter the distance. These results demonstrate
that the adopted hypergraph model and weight function capture
the essence of the problem.
To demonstrates advantage of the hypergraph model, we run

the same process based on the following graph model. Each
person is a vertex of the graph. There exists an edge between
two vertices only if there is an e-mail that involves the two
people represented by either as sender or receiver. In com-
parison to the hypergraph model, we substitute in (5) to 2,
the cardinality of an edge, in the weight function

(6)

In this model, the weight of an edge only depends on the fre-
quency of e-mail exchanges, but not the number of people in-
volved in those e-mails. First, we use Dijkstra’s algorithm to
compute closeness centrality for each vertex. Based on the re-
sults, the most important actor is still identified to be the CEO of
Enron. However, the average distances from the CEO no longer
reveal the hierarchy of this company for the entire range of
(values from 0.1 to 0.9 with a step size of 0.1 were tested). Fig. 7
shows the result for . The result is similar for other
values of .
Next, we construct a dynamic hypergraph sequence based

on the Enron data set. At the beginning, the hypergraph con-
tains only individual vertices. We then consider each e-mail
chronologically. Each e-mail either adds a new hyperedge or
decreases the weight of an existing hyperedge (due to the in-
creased number of appearances of this hyperedge). The two pro-
posed algorithms are employed to maintain the shortest hyper-
paths rooted at the CEO after each change. The running time is
given in Fig. 8, which shows the lower complexity of DR-DSP.
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Fig. 7. Average distance from the CEO to others at different positions obtained
in the graph model .

Fig. 8. Average running time for the Enron data set ( , the average is
taken over 50 Monte Carlo runs).

The reason is that a large fraction of hyperedge changes result
in changes in the shortest hyperpaths.

VIII. DISCUSSION

The shortest path problem in a hypergraph can be transformed
to the shortest path problem in an induced graph, and there
are many ways of transforming the problem. As an algorithmic
study of the problem where the objective is the efficiency of
the solution, we aim to address the following two questions in
this paper: 1) When is it more efficient to transform the problem
into a graph problem rather than working directly on the hyper-
graph? 2) When it is more efficient to transform the problem,
which graph transformation has better time complexity?
The first question was addressed by a detailed complexity

comparison, both analytically (Section V) and empirically
(Section VII), of the two proposed algorithms, one working
directly on the hypergraph, the other based on a graph transfor-
mation. This complexity comparison leads to a partition of the

Fig. 9. Given a hypergraph (a), we first create a multigraph (b) by replacing
each hyperedge with a clique whose edges have the same weight as the hyper-
edge. Then, each edge in this multigraph is replaced with one vertex and two
edges to create a traditional graph (c). The weight of a new edge in the graph is
half the weight of the multigraph edge from which the new edge is derived. As
can be seen, the shortest path in the induced graph represents the shortest path
in the original hypergraph. Maintaining this underlying graph after one hyper-
edge change takes time. However, the number of vertices in the induced
graph is more than the sum of the number of vertices and the number of hyper-
edges in the original hypergraph.

Fig. 10. Given a hypergraph (a), we create its dual-transformation bipartite-
graph (b): Each vertex on the left side of represents a vertex in the ,
and each vertex on the right side represents a hyperedge in . There is an edge
between two vertices if the corresponding hyperedge contains the corresponding
vertex in . The weight of the edge in is half the weight of the hyperedge
represented by the right vertex of this edge. It is easy to see that the shortest
path problem in is equivalent to the shortest path in . Maintaining this
underlying graph after one hyperedge change takes time. However, the
number of vertices in the induced graph equals the sum of the number of vertices
and the number of hyperedges in the original hypergraph.

application domain for these two approaches based on the type
of the hypergraph and the nature of the dynamics of the weight
changes.
To tackle the second question, we first notice that to cap-

ture all the information of an edge-weighted hypergraph with
vertices, the induced graph can be exponentially large with
since the number of hyperedges (hence hyperedge weights)

can be exponential with . Figs. 9 and 10 demonstrate two ex-
amples of a graph transformation that can result in an exponen-
tially large graph. Since time complexity of dynamic shortest
path algorithms can be the same as a static one in the worst
case [2], [4], [5], applying them to these types of underlying
graph that represents complete information of the given hyper-
graph results in exponential time complexity with
When adapting a graph reduction-based approach, we do

need to maintain the complete information of the hypergraph in
order to update the hypergraph for future hyperedge changes.
However, we also want to reduce the size of the underlying
graph so that applying a dynamic shortest path algorithm to it
results in polynomial time complexity with in the worst case.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GAO et al.: DYNAMIC SHORTEST PATH ALGORITHMS FOR HYPERGRAPHS 11

TABLE I
COMPARISON BETWEEN THREE GRAPH-TRANSFORMATION-BASED

APPROACHES

We overcome this dilemma in the proposed DR-DSP algo-
rithm by constructing a two-level data structure. One level is a
list of priority queues for maintaining the complete information
of the hypergraph. The other level is an underlying graph with
vertices that only contains the essential information needed

for the shortest path calculation. Though the size of the data
structure at the first level can be exponential with , main-
taining it and the underlying graph after each hyperedge change
only requires polynomial time complexity with (specifically,

in the worst case). Since the underlying graph has only
vertices, updating the shortest paths after each change also

has a time complexity polynomial with . Table I gives a de-
tailed complexity comparison of the proposed DR-DSP algo-
rithm with the two alternative graph-transformation-based ap-
proaches given in Figs. 9 and 10. It shows that DR-DSP reduces
the time complexity from exponential to polynomial by striking
a balance between the complexity for maintaining the resulting
graph after the transformation and the complexity for main-
taining the shortest paths in .

IX. CONCLUSION

We have presented the first study of the fully dynamic shortest
path problem in a general hypergraph. We have developed two
dynamic algorithms for finding and maintaining the shortest hy-
perpaths. These two algorithms complement each other with
each one preferred in different types of hypergraphs and net-
work dynamics, as illustrated in the time complexity analysis
and simulation experiments. The special two-level data struc-
ture of our second algorithm, DR-DSP, may also find other ap-
plications in dynamic hypergraph studies. We have discussed
and studied via experiments over a real data set the potential
applications of the dynamic shortest hyperpath problem in so-
cial and communication networks.

APPENDIX A
PROOF OF THEOREM 1

The proof is based on the following three lemmas.

Lemma 2: Let , then and
.

Proof: Proof by contradiction. Assume that ,
then has to use on its new shortest hyperpath. Since we
consider only simple hyperpaths and , we have
. Therefore, its parent cannot use on its shortest
hyperpath, which implies that the shortest distance to does
not change: . Given that is the parent of on its
new shortest hyperpath, we have ,
which contradicts the definition of .
For the second statement, assume that there exists such

that . Based on the definition of and the hypothet-
ical assumption, . It thus follows
that ’s shortest hyperpath changes and in the new
shortest hyperpath. Following the same line of arguments by
considering the parent of , we arrive at the same contradiction
in terms of the definition of .
Lemma 3: For any vertex , is enqueued into if and only

if .
Proof: Consider first that is enqueued into . From the

algorithm, this can only happen if there exists a neighbor and
a hyperedge such that . We thus
have (note that at any
time, , which can be easily seen from the
procedure of the algorithm).
We now prove the converse. Assume that . Let

be ’s new shortest hyper-
path. There exists such that .
In Step 1 of the algorithm, is enqueued. Similarly, there ex-
ists with . Then,
will be enqueued in Step 2 of the algorithm when is de-
queued if it has not been enqueued before that. Repeating this
line of argument, we conclude that there exits
with and is enqueued into . Then, will be
enqueued when is dequeued if it is not enqueued already.
Lemma 4: For each dequeued from , .
Proof: We first show that if is dequeued before , then

at the instants when they are dequeued. We prove
this by induction. The initial condition holds trivially. Then, as-
sume it is true for the first dequeued vertices . Con-
sider the th dequeued vertex . At the instant when is
dequeued, if is updated based on in Step 2, then

even after the update. If, on the other hand,
is not updated at this instant, then

given that the dequeued vertex has the smallest distance.
Next, we prove the lemma by induction. From Step 1 of the

algorithm, all the affected vertices in will be dequeued first
with , , and . Based on
Lemma 2, for any . It thus follows
that the hyperpath to through and is the shortest one with

.
Assume for , are satisfied for all

. Consider the th dequeued vertex .
Let be its parent in the new shortest hyperpath.
Then, based on the fact that distances of the dequeued vertices
are monotonically increasing with the order of the dequeueing
as shown at the beginning of the proof, cannot be any vertex
dequeued after . Since , it is also clear that cannot
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be an unaffected vertex (otherwise, will be unaffected,
which contradicts Lemma 3). We thus have .
Let . Then, when is dequeued, will be updated
to the shortest distance due to the induction hypothesis
of . This completes the proof.
Based on Lemmas 3 and 4, the shortest distances of all af-

fected vertices will be updated correctly. Based on Lemma 3,
no unaffected vertex will be enqueued, and their distances re-
main the same. It is not difficult to see from the algorithm that

and are also correctly maintained for all .

APPENDIX B
PROOF OF THEOREM 2

We first show the correctness of the coloring process as given
in the following lemma.
Lemma 5: The coloring process correctly colors all the af-

fected vertices.
Proof: We first state the following simple facts without

proof: Given a relationship tree, after the hyperedge weight in-
crease: 1) if is pink or white, then all its descendent in this
relationship tree are white; 2) if a is red, then all its children
in the relationship tree are either pink or red; 3) if is affected,
either or is red. These facts can be directly obtained
from the definition of the colors. It is also easy to see that ver-
tices are dequeued from in a nondecreasing order of their
current distance . This is because each time a vertex is de-
queued from , the possible new vertices to be enqueued into
are ’s children with distances no smaller than .
Then, the proof of the lemma has two parts: First, we prove

that all affected vertices are enqueued into ; then we prove by
induction that only affected vertices are enqueued into and
their colors are correctly identified.
We prove the first part by contradiction. Assume that there

exists an affected vertex that is not enqueued into . It is
easy to see that because all the affected vertices in are
enqueued in Step 1. Based on the third fact stated above, is
red. Based on the hypothesis, is not enqueued (otherwise,
will be enqueued in Step 2). Continuing this line of arguments,
we eventually reach the root of the relationship tree and arrive
at the contradiction that the source is red.
We prove the second part by induction. It is easy to see that

all the vertices initially enqueued into are affected vertices.
It remains to show that the first vertex dequeued from is
colored (pink or red) correctly. To show that, we need to estab-
lish that the algorithm correctly determines whether there is an
alternative shortest hyperpath to with the same distance, i.e.,

. The key here is to show that checking the cur-
rently nonred neighbors (which may become red in the future)
of will not lead to a false alternative path. This follows from
the fact that has the smallest distance among all affected
vertices (which belong to the set of vertices consisting of the
affected vertices in and their descendents).
Next, assume that vertices dequeued from

are all affected vertices and are correctly colored. Consider the
next dequeued vertex . It is an affected vertex because it is

either enqueued in Step 1 with or enqueued in Step 2
with a red parent. To show that will be colored correctly,
we use a similar argument by showing that the currently nonred
neighbors of will not give a false alternative path. The latter
follows from the fact that all affected vertices will be enqueued
and those dequeued after have distances no smaller than

. This completes the induction.
We now show that and are correctly main-

tained for all . For each red vertex , its distance is set based on
the current shortest distance from a nonred neighbor in Step 3.a.
The rest of the algorithm is essentially Gallo’s extension of Di-
jkastra’s algorithm with the current initial distance. The cor-
rectness of the algorithm thus follows. It is not difficult to see
that and are correctly updated for both red and pink
vertices.
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